Abstract
AbstractInternational fabrication codes and standards provide minimum distance criteria for proximity welds, although rigorous justification is lacking. These distances are either based on practical experience or mutual agreement and are often left to the engineering judgment of contractors, inspection engineers, etc., especially in cases of repair welds fabricated in proximity to existing welds. Previous studies have shown high tensile residual stresses and altered mechanical and microstructural properties between proximity welds. This article focuses on numerical and experimental quantification of residual stresses in the proximity region by X-ray diffraction (XRD) and finite element method (FEM) thermo-mechanical models. Specimens were machine welded, then repair welded at distances of 5–15 mm. A fair agreement in results was achieved between FEM and XRD. The most detrimental effect was observed at the weld root toe for the repair weld at 5 mm proximity, likely due to the high constraint and multiaxial stress state. These findings enable practitioners to propose technical justification and corrective actions while specifying minimum distance criteria for proximity welds.
Funder
Norges Forskningsråd
University of Stavanger & Stavanger University Hospital
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献