A new surrogate model–based method for individualized spot welding sequence optimization with respect to geometrical quality

Author:

Tabar Roham SadeghiORCID,Wärmefjord Kristina,Söderberg Rikard

Abstract

AbstractIn an individualized shee metal assembly line, form and dimensional variation of the in-going parts and different disturbances from the assembly process result in the final geometrical deviations. Securing the final geometrical requirements in the sheet metal assemblies is of importance for achieving aesthetic and functional quality. Spot welding sequence is one of the influential contributors to the final geometrical deviation. Evaluating spot welding sequences to retrieve lower geometrical deviations is computationally expensive. In a geometry assurance digital twin, where assembly parameters are set to reach an optimal geometrical outcome, a limited time is available for performing this computation. Building a surrogate model based on the physical experiment data for each assembly is time-consuming. Performing heuristic search algorithms, together with the FEM simulation, requires extensive evaluations times. In this paper, a neural network approach is introduced for building surrogate models of the individual assemblies. The surrogate model builds the relationship between the spot welding sequence and geometrical deviation. The approach results in a drastic reduction in evaluation time, up to 90%, compared to the genetic algorithm, while reaching a geometrical deviation with marginal error from the global optimum after welding in a sequence.

Funder

The Swedish Foundation for Strategic Research

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3