Tool wear and spring back analysis in orthogonal machining unidirectional CFRP with respect to tool geometry and fibre orientation

Author:

Seeholzer LukasORCID,Kneubühler Fabian,Grossenbacher Frank,Wegener Konrad

Abstract

AbstractMachining abrasive carbon fibre reinforced polymers (CFRP) is characterised by extensive mechanical wear. In consequence, the cutting edge micro-geometry and thus the tool/material contact situation are continuously changing, which affects process forces and machining quality. As a conclusion, a fundamental understanding of the tool wear behaviour and its influencing factors is crucial in order to improve performance and lifetime of cutting tools. This paper focuses on a fundamental tool wear analysis of uncoated tungsten carbide cutting inserts with different combinations of fibre cutting angles and tool geometries. For this purpose, orthogonal machining experiments with unidirectional CFRP material are conducted, where the wear progression of the micro-geometry is investigated by means of five wear parameters lα, lγ, γ*, α*, and bc. For detecting the actual contact zone of the cutting edge and to measure the elastic spring back of the material, the flank face is marked via short pulsed laser processing. Furthermore, the process forces and the wear rate are measured. It is shown that the material loss due to wear clearly varies along the tool’s contact region and is highly dependent on the clearance angle and the fibre cutting angle Φ, while the influence of the tested rake angles is mostly negligible. Especially in machining Φ=30° and Φ=60°, a strong elastic spring back is identified, which is more intense for smaller clearance angles. For all tested configurations, the material’s elastic spring back increases in intensity as wear progresses which, in combination with the decreasing clearance angle, is the main reason for high thrust forces.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3