Automatic monitoring of steel strip positioning error based on semantic segmentation

Author:

Lemos Aline de FariaORCID,da Silva Leonardo Adolpho Rodrigues,Nagy Balázs Vince

Abstract

AbstractThe misalignment of steel strips in relation to the roller table centerline still is an impairment for the rolling mill production lines. Nowadays, the strip position correction remains largely in the purview of human analysis, in which the strip steering is traditionally a semi-manual operation. Automating the alignment process could reduce the maintenance costs, damage to the plant, and prevent material losses. The first step into the automatization is to determine the strip position and its referred error. This study presents a method that employs semantic segmentation based on convolution neural networks to estimate steel strips positioning error from images of the process. Additionally, the system mitigates the influences of mechanical vibration on the images. The system performance was assessed by standard semantic segmentation evaluation metrics and in comparison with the dataset ground truth. The results showed that 97% of the estimated positioning errors are within a 2-pixel margin. The method demonstrated to be a robust real-time solution as the networks were trained from a set of low-resolution images acquired in a complex environment.

Funder

BME NC TKP2020

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3