Selecting an appropriate supervised machine learning algorithm for predictive maintenance

Author:

Ouadah Abdelfettah,Zemmouchi-Ghomari LeilaORCID,Salhi Nedjma

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference30 articles.

1. Abdallah K (2007) Techniques de Maintenance Prédictive pour l’Amélioration de la disponibilité des Installations, Doctoral dissertation. Université de Annaba-Badji Mokhtar

2. Alsharif MH, Kelechi AH, Yahya K, Chaudhry SA (2020) Machine learning algorithms for smart data analysis in the Internet of things environment: taxonomies and research trends. Symmetry 12(1):88

3. Asad A (2016) Three types of Machine Learning Algorithms

4. Baptista M, Sankararaman S, de Medeiros IP, Nascimento C Jr, Prendinger H, Henriques EM (2018) Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modelling. Comput Ind Eng 115:41–53

5. Benchettouh SE (2019) Elaboration d’un système de prédiction des pannes et de planification des maintenances. Doctoral dissertation, universite mohamed boudiaf-m’sila-faculte mathematiques et de l’informatique

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A narrative review of AI-driven predictive maintenance in medical 3D printing;The International Journal of Advanced Manufacturing Technology;2024-08-23

2. A predictive and explanatory model for remaining useful life of crushers using deep learning;Neural Computing and Applications;2024-08-13

3. Predictive maintenance of district heating networks: A comprehensive review of methods and challenges;Thermal Science and Engineering Progress;2024-08

4. Intelligent scheduling model of main grid outage plan based on multiple indicator constraints;Journal of Physics: Conference Series;2024-06-01

5. Maintenance dynamic scheduling for a Tunisian railway transport system;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3