Microstructural homogenization and mechanical enhancement of aluminum matrix composites via multi-pass friction stir processing with SiC reinforcements

Author:

Leszczyńska-Madej BeataORCID,Madej MarcinORCID,Wąsik AnnaORCID,Węglowska Aleksandra

Abstract

AbstractIn this study, the environmentally friendly friction stir processing (FSP) method was utilized to fabricate surface composites employing technical aluminum matrix 1050-H14 and aluminum alloy 6060-T4 reinforced with silicon carbide (SiC) particles. Microstructure analysis, employing light and scanning electron microscopy, in conjunction with comprehensive evaluations of hardness, compressive strength, and tribological properties, was conducted to elucidate significant findings. The results reveal that an augmented number of FSP passes contributes to the homogenization of microstructure, leading to the alteration of SiC particle morphology and fragmentation. Consequently, this phenomenon results in improved mechanical properties, particularly noteworthy in the case of AA6060-T4 alloy matrix composites, and enhanced wear resistance. Both AA1050-SiC and AA6060-SiC composites demonstrate notable increases in compressive strength compared to their unreinforced matrices. Particularly noteworthy is the substantial enhancement in compressive strength observed in the AA6060-SiCp composite, escalating from 249 to 331 MPa (at ε = 0.1) and from 398 to 715 MPa (at ε = 0.2) with an increase in the number of FSP passes. Additionally, FSP’s ability to precisely control process parameters such as tool rotational speed and traverse speed allows for the optimization of mechanical properties and microstructural characteristics tailored to specific application requirements. This study highlights the potential of FSP in fabricating high-performance aluminum matrix composites with superior strength and wear resistance, positioning it as a viable technique for advanced engineering applications. The environmentally friendly nature of FSP, due to its solid-state operation and reduced energy consumption, further underscores its suitability for sustainable manufacturing practices.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3