On the effects of cutting-edge angle on high-feed turning of Inconel 718© superalloy

Author:

Amigo Francisco Javier,Urbikain GorkaORCID,de Lacalle Luis Norberto López,Fernández-Lucio Pablo,Pereira Octavio,Fernández-Valdivielso Asier

Abstract

AbstractMachining processes on heat-resistant superalloys—i.e., turbine cases, rings, or shafts—are challenging tasks. The high-added value of such parts makes cycle times be longer than expected. Recently, high-feed turning technique has attracted the attention of practitioners due to its high material removal rate capability. PrimeTurning™ tool unifies the concepts of high-feed and multidirectional turning using multiple active cutting edges. It should be capable of reducing machine downtimes in that kind of parts. However, to avoid early tool replacement and rejects on high added value parts, a deeper knowledge on the high-feed turning process is necessary. Here, inserts specifically designed for high-feed turning in heat resistant Inconel 718© alloy were tested using three cutting-edge angles. The results showed that when chip thickness is more relevant, a cutting-edge angle of 30° reduces the likelihood of notches. Even if force components are high, surface roughness is improved and the risk of fractures is minimized, together with a high evacuation volume. On the other hand, increasing the cutting-edge angle (45° and 60°) without compensating the feed rate, tends to produce tool fractures due to chip overload. Besides, experimental tests showed that long tool-to-workpiece contact times, tend to shorten tool life, due to excessive heat accumulation and poor chip control.

Funder

Universidad del País Vasco

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3