Mechanical characterization of thermoplastic elastomers based on olefin processed through material extrusion

Author:

Adrover-Monserrat Bàrbara,Llumà Jordi,Jerez-Mesa Ramón,Travieso-Rodriguez J. AntonioORCID

Abstract

AbstractThermoplastic elastomeric materials are processable through 3D printing. These materials demonstrate excellent mechanical properties, along with good flexibility. A better understanding of the creation of bonds between the filaments of these copolymers is still needed. When extruded, these materials have shown to have a different behavior compared to commonly known thermoplastic materials. The methodology, hereby presented, relies on the tensile tests of 3D-printed samples of two thermoplastic elastomers based on olefin: TPO 90A and TPO 96A. In order to study the effect of printing parameters on the mechanical behavior of the samples, these have been manufactured following a full factorial design of experiments. Statistical influences were evaluated with an analysis of variance. Layer height and fill density were the variable parameters. Eventually, these two parameters were shown to have a significant effect on the mechanical properties studied (Young’s modulus and yield strength). Once all the results were analyzed, the presented methodology was applied to another set of specimens. These had been manufactured with a different printer and with the same material but colored. The analysis of variance showed that, although the mechanical properties were affected by the color pigments, the trends of this analysis and the recommended manufacturing values did not vary. The results showed that when working with thermoplastic elastomers and in order to maximize Young’s modulus and yield strength, a 0.3-mm layer height and a 75% fill density should be selected.

Funder

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precision Enhancement in Tough Polylactic Acid Material Extrusion: A Systematic Response Surface Investigation for Sustainable Manufacturing;SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy;2024-07-23

2. Screw extrusion additive manufacturing of thermoplastic polyolefin elastomer;Progress in Additive Manufacturing;2024-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3