How do small changes enable the shift to net-zero? a techno-environmental-economic analysis

Author:

Haddad Yousef,Pagone Emanuele,Parra Rodrigo Valdez,Pearson Nicholas,Salonitis Konstantinos

Abstract

Abstract With many of the world’s governments committing to achieve net-zero greenhouse gas (GHG) emissions by mid-century, with well-defined milestones along the road, it is important to investigate how each sector can contribute towards achieving this global goal. The manufacturing sector, with its energy-intensive processes, large amounts of wastes, and hazardous and harmful emissions, is one of the main contributors to global GHG emissions, as well as other sustainability aspects, and, thus, it has great potential to contribute substantially to achieve net-zero objectives. This paper presents a techno-environmental-economic analysis of technologies that can play a key, enabling and leading role in the quest towards net-zero. Such technologies typically bring modest improvement in the environmental performance; however, the aim of this paper is to demonstrate how such small changes, when implemented in an industrial setting, can contribute significantly to the collective improvement in the environmental performance. In order to put the potential improvements into perspective, a real case study from the UK aerospace manufacturing sector is conducted. In the case study, metrics measuring potential improvements from the installation of a low-to-medium waste heat recovery system, and the upgrade of electric motors in the shopfloor to more energy efficient ones, are calculated through environmental and economic models. The models are then subject to a series of sensitivity analyses experiments to help understand the impact of different sources of uncertainty on the perceived GHG emissions, and economic and energy savings. The techno-environmental-economic analysis results revealed that these small changes, when implemented in an industrial setting, can indeed bring valuable improvements in the environmental performance of a manufacturing institute. Further, the sensitivity analysis experiments demonstrated how the environmental and economic performances are not adversely affected by different levels of fluctuations in key, likely to fluctuate, input parameters.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3