Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in different process and post-process conditions

Author:

Liverani Erica,Fortunato Alessandro

Abstract

AbstractStainless steel (SS) alloys produced by laser-based powder bed fusion (LPBF) offers comparable and sometime superior mechanical properties compared to conventionally processed materials. Some of these steels have been extensively studied over the last decade; however additively manufactured martensitic SS, such as AISI 420, need further research in characterizing their post-built quality and mechanical behaviour. This lack of information on martensitic SS is not consistent with their growing demand in the automotive, medical and aerospace industries due to their good corrosion resistance, high hardness and good tensile properties. Selection of the appropriate process parameters and post treatments plays a fundamental role in determining final properties. For this reason, the effect of LPBF process parameters and different heat treatments on density, defect characteristics and locations, roughness and mechanical properties of AISI 420 were investigated in this paper. A first experimental campaign was carried out to establish a set of suitable process parameters for industrial applications. Starting from this result, detected defect properties were investigated by computed tomography (CT) scans. Dimensions, sphericity and distributions of defects inside the volume were analysed and compared between samples manufactured with different parameters. In the second part of the paper, the influence of process and post-process conditions on mechanical properties was investigated. The final presented results establish a correlation between the employed production cycle and the resulting properties of LPBF AISI 420 specimens.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3