Effects of preheating on laser beam–welded NSSC 2120 lean duplex steel

Author:

Landowski Michał,Simon Soma Csaba,Breznay Csaba,Fydrych Dariusz,Varbai BalázsORCID

Abstract

AbstractDuplex stainless steels show sustainable alternative for the conventional austenitic grades, with higher strength, higher resistance against stress corrosion cracking, and lower purchase cost. Thus, duplex stainless steel gains more attention in construction, oil and gas, and chemical industries. Among duplex stainless steels, low nickel and low molybdenum alloyed lean duplex stainless steel are a cost-effective substitution of austenitic grades. However, keeping the balanced ferrite/austenite phase ratio in the weld metal can be challenging, mostly for autogenous and low heat input welding processes. In our research, a newly developed NSSC 2120 lean duplex stainless steel grade was welded autogenously by fiber laser welding process. Different welding parameters and preheating temperatures were used during the experiments. The welds were evaluated by microscopic and metallographic techniques, and also by electrochemical corrosion measurements. The welding parameters and the preheating temperature greatly influenced the weld shape and the austenite content in the weld metal. It was found that the focus point distance from the sheet surface had significant effect on the weld geometry. Changing the focus point distance to + 2 mm, the penetration depth increased from 4.96 to 5.53 mm, and increased the austenite content by 2.6%. Due to the preheating the welds became wider and shallower, e.g., from 4.96 to 4.08 mm penetration depth, while the cross-section are increased from 5.10 to 6.12 mm2 at the same sample. The preheating resulted in more intergranular austenite formation, which meant maximum 4% increase in the weld metal. The increasing austenite content resulted in increasing pitting corrosion resistance in 3.5% NaCl electrolyte, the highest increase was 90 mV.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

European Union Key Action 2

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3