Systematic approach to process parameter optimization for laser powder bed fusion of low-alloy steel based on melting modes

Author:

Bergmueller SimonORCID,Gerhold Lukas,Fuchs Lorenz,Kaserer Lukas,Leichtfried Gerhard

Abstract

Abstract In the metal additive manufacturing (AM) process of laser powder bed fusion (LPBF), there are a limited number of materials suitable for producing parts with high density and desired mechanical properties. To establish novel materials, it is essential to determine optimized process parameters in order to overcome process-related challenges and mitigate defects such as lack of fusion, keyholing, and balling. Scaling laws based on thermophysical properties and process parameters can be used to transfer knowledge from other materials or LPBF systems. In this work, a scaling law is used to adjust process parameters for single-track experiments over a wide range, which are laser power PL (100–1000 W), scan speed vs (300–2500 mm/s), and laser spot size ds (0.08–0.25 mm). Compared to existing studies, the parameter range is thus extended towards large laser spot sizes and high laser powers. The scaling law used is based on the calculation of the normalized enthalpy $$\frac{\Delta H}{{h}_{s}}$$ Δ H h s . The ratio of the deposited energy density $$\Delta$$ Δ H and the melting enthalpy hs correlates with the dimensions of the melt pool. According to the aspect ratio $${\delta }_{\mathrm{c}}$$ δ c of the melt pool of each single track, the respective melting mode—conduction, transition, and keyhole mode—was identified. The process parameters of the single tracks in transition mode were used to optimize the density of the LPBF specimens with varying hatch distance hd (0.06–0.12 mm), resulting in specimens with a relative density of > 99.8%. The proposed methodology can accelerate the process parameter finding for new alloys and avoid process-related defects. Graphical Abstract

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3