Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing

Author:

Gisario Annamaria,Barletta MassimilianoORCID,Veniali Francesco

Abstract

AbstractAdditive manufacturing is a vanguard production technology that has contributed greatly to speed up replacing on the market of complex-shaped components. A delicate and unavoidable phase of additive technology is that relating to the post-processing of the components, especially the finishing process. Post-processing needs to be automated and made scalable so that the technology can actually be adopted also for mass production. In this respect, an emerging post-processing technology suitable for surface finishing, not in contact and easily automatable, is the one that involves the use of laser sources, known by the name of laser polishing. Laser polishing is spreading, in fact, more and more strongly, in the field of manufacturing as a valid alternative to conventional technologies for the surface finishing of metallic components obtained by additive processes. Laser polishing is widely considered very suitable to improving the surface finish of metal components. When compared with the conventional finishing technologies, laser polishing has many benefits in terms of costs and process times especially if automated, through the use of CNC systems and scanning heads. In this manuscript, the knowledge of this technology is deepened through a review of the relevant literature that highlights the aspects of the interaction of the laser beam with the metal alloys most frequently used in 3D printing, without neglecting the importance of the thermo-mechanical properties that derive from it. The analysis conducted on the technology of laser polishing aims therefore at evaluating the potential applications in industrial engineering, mainly with regard to the surfaces quality achievable as a result of the polishing of metal components fabricated by additive manufacturing.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3