Job rotation and human–robot collaboration for enhancing ergonomics in assembly lines by a genetic algorithm

Author:

Dalle Mura MichelaORCID,Dini Gino

Abstract

AbstractCurrently, the largest percentage of the employed workforce in the manufacturing industry is involved in the assembly process, making ergonomics a key factor when dealing with assembly-related problems. During these processes, repetitive tasks and heavy component handling are frequent for workers, who may result overloaded from an energetic point of view, thus affecting several aspects not only relating to the human factor but also to potentially reduced productivity. Different organizational strategies and technological solutions could be adopted to overcome these drawbacks. For these purposes, the present paper proposes a genetic algorithm for solving the typical problem of assembly line balancing, taking into account job rotation and human–robot collaboration for enhancing ergonomics of workers. The objectives of the problem are related to both economic aspects and human factor: (i) the cost for implementing the assembly line is minimized, evaluated on the basis of the number of workers and differentiated by skill levels and on equipment installed on workstations, including collaborative robots, and (ii) the energy load variance among workers is also minimized, so as to smooth their energy expenditure in performing the assigned assembly operations, calculated according to their movements, physiological characteristics, job rotations and degree of collaboration with robots. The paper finally presents and discusses the application of the developed tool to an industrial assembly case.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3