Compressive response versus power consumption of acrylonitrile butadiene styrene in material extrusion additive manufacturing: the impact of seven critical control parameters

Author:

Petousis Markos,Vidakis NectariosORCID,Mountakis Nikolaos,Karapidakis Emmanuel,Moutsopoulou Amalia

Abstract

AbstractAcrylonitrile butadiene styrene (ABS) is a multipurpose thermoplastic and the second most popular material in material extrusion (MEX) additive manufacturing (AM). It is widely used in various types of industrial applications in the automotive sector, housing, and food processing, among others. This work investigates the effect of seven generic control parameters (orientation angle, raster deposition angle, infill density, layer thickness, nozzle temperature, printing speed, and bed temperature) on the performance and the energy consumption of 3D-printed ABS parts in compression loading. Raw material with melt extrusion was formed in a filament form for MEX 3D printing. Samples after the ASTM D695-02a standard were 3D printed, with the seven control parameters, three levels, and five replicas each (135 experiments in total). Results were analyzed with statistical modeling tools regarding the compressive and the energy consumption metrics (printing time, weight, energy printing consumption/EPC, specific printing energy/SPE, specific printing power/SPP, compression strength, compression modulus of elasticity, and toughness). The layer thickness was the most critical control parameter. Nozzle temperature and raster deposition angle were the less critical parameters. This work provides reliable information with great technological and industrial impact. Graphical Abstract

Funder

Hellenic Mediterranean University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3