Increasing the efficiency of material removal using dual laser micromachining

Author:

Alkhawaldeh OsamaORCID,Coupland JeremyORCID,Jones Lewis C. R.ORCID

Abstract

AbstractA continuous wave melting laser combined with a nanosecond ejection laser has been shown to improve the material removal efficiency by a factor of 2 to 8 compared with laser ablation processes reported in the literature. The decrease in the energy required for the combined lasers is primarily due to the optimisation of the irradiation time in the melting process, which is responsible for the majority of the total energy. For the laser used in this study, the optimal interaction time corresponding to the highest melting efficiency was found at 9-ms melting time, and this value is compared with results derived from a one-dimensional heating model. Metallurgical images of only melting and the produced hole after introducing the ejection pulse for the most efficient melting were presented as evidence of melt ejection. The results show that approximately 90% of the melt pool is ejected with little redeposited material at the periphery of the hole.

Funder

Loughborough University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3