Adapted tool design for the cold forging of gears from non-ferrous and light metals

Author:

Rohrmoser AndreasORCID,Hagenah Hinnerk,Merklein Marion

Abstract

AbstractDue to growing competitive pressure within the manufacturing sector, there have been increasing attempts to establish resource saving production methods in gear manufacturing within recent years. Cold forging offers the potential—in addition to a high material and energy efficiency—to produce gears with an excellent surface quality, increased hardness as well as a load adapted fiber orientation. With regard to the wide range of applications there is a broad demand for gear materials, ranging from high-strength steels to non-ferrous and light metals. The flow behavior of the material has a significant influence on the cold forging process. Therefore, no consistent process result is achieved when forming different materials. Challenges exist due to deficient die filling and poor resulting geometrical accuracy. In this contribution, material-specific challenges during the full forward extrusion of gears from non-ferrous and light metals have been identified and suitable tool-sided measures were derived. A validated numerical process model was used to determine the underlying mechanisms of action and to verify the derived measures. A reduced yield stress leads to inflow formation, insufficient die filling, and low achievable strain hardening, as well as gearing accuracy. The tool-sided measures achieved a significant increase of resulting die filling and gearing accuracy as well as the mechanical properties. That provides the basis for the production of ready-to-use gears from various metal materials.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3