Tool life prognostics in CNC turning of AISI 4140 steel using neural network based on computer vision

Author:

Bagga Prashant J.,Makhesana Mayur A.,Darji Pranav P.,Patel Kaushik M.,Pimenov Danil Yu,Giasin KhaledORCID,Khanna Navneet

Abstract

Abstract One of the essential requirements for intelligent manufacturing is the low cost and reliable predictions of the tool life during machining. It is crucial to monitor the condition of the cutting tool to achieve cost-effective and high-quality machining. Tool conditioning monitoring (TCM) is essential to determining the remaining useful tool life to assure uninterrupted machining to achieve intelligent manufacturing. The same can be done by direct and indirect tool wear measurement and prediction techniques. In indirect methods, the data is acquired from the sensors resulting in some ambiguity, such as noise, reliability, and complexity. However, in direct methods, the data is available in images resulting in significantly less chances of ambiguity with the proper data acquisition system. The direct methods, which provide higher accuracy than indirect methods, involve collecting images of worn tools at different stages of the machining process to predict the tool life. In this context, a novel tool wear prediction system is proposed to examine the progressive tool wear utilizing the artificial neural network (ANN). Experiments were performed on AISI 4140 steel material under dry cutting conditions with carbide inserts. The cutting speed, feed, depth of cut, and white pixel counts are considered as input parameters for the proposed model, and the flank wear along with remaining tool life is predicted as the output. The worn tool images were captured using an industrial camera during the turning operation at regular intervals. The ANN training set predicts the remaining useful tool life, especially the sigmoid function and rectified linear unit (ReLU) activation function of ANN. The sigmoid function showed an accuracy of 86.5%, and the ReLU function resulted in 93.3% accuracy in predicting tool life. The proposed model’s maximum and minimum root mean square error (RMSE) is 1.437 and 0.871 min. The outcomes showcased the ability of image processing and ANN modeling as the potential approach for developing a low-cost industrial tool condition monitoring system that can measure tool wear and predict tool life in turning operations.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3