Micro-grooving of brittle materials using textured diamond grinding wheels shaped by an integrated nanosecond laser system

Author:

Geng Zongchao,Tong Zhen,Huang Guoqin,Zhong Wenbin,Cui Changcai,Xu Xipeng,Jiang Xiangqian

Abstract

AbstractFreeform surfaces including both the aspherical and prismatic concave/convex have been widely utilized in optical, electronical, and biomedical areas. Most recently, it is reported that grinding with structured wheels provides new possibility to generate patterns on hard and brittle materials. This paper reports the latest research progress on micro-grooving glass ceramic using laser structured diamond grinding wheels. A nanosecond pulse laser is firstly integrated into an ultra-precision machine tool and used for the in-line conditioning of super abrasive grinding wheels, i.e., truing, dressing, and profiling/texturing. Meanwhile, an offset compensation method, considering the shifting depth of focus (DoF) at different laser irradiation positions, is proposed to accurately generate various profiles on the periphery of the grinding wheels. Three types of patterns (riblets, grooves, and pillars) are successfully fabricated on the ceramic substrate using the laser textured grinding wheels. The results indicate that the integrated laser system offers high flexibility and accuracy in shaping super abrasive grinding wheels, and the grinding using textured grinding wheels provides a promising solution to generate functional microstructures on hard and brittle materials.

Funder

Engineering and Physical Sciences Research Council

H2020 European Institute of Innovation and Technology

Flexible open research funding of Institute of Manufacturing Engineering of Huaqiao University

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3