Abstract
AbstractThe paper details experimental and optimisation results for the effect of cutting fluid concentration and operating parameters on the average surface roughness (Ra) and tool flank wear (VB) when flooded turning of Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. Cutting fluid concentration, cutting speed, feed rate, and cutting tool were the control variables. Response surface methodology (RSM) was employed to develop an experimental design and optimise Ra and VB using linear models. The study revealed that cutting fluid concentration has a little influence on Ra and VB performance, while Ra was strongly affected by feed rate and cutting tool type. The developed empirical model also suggested that the best parameters setting to minimise Ra and VB are 5%, 58 m/min and 0.1 mm/rev for cutting fluid concentration, cutting speed, and feed rate, respectively, using H13A tool. At this setting, the predicted surface roughness and tool wear were 0.48 and 30 μm, respectively. In the same vein, tool life and micro-hardness tests were performed at the suggested optimum cutting condition with different cutting speeds. A notable decrease in tool life (82.3%) was obtained when a higher cutting speed was used.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献