Theoretical and experimental analysis of the temperature rise of a ball screw

Author:

Qiu Ya-LanORCID,Zhou Chang-Guang,Ou Yi,Feng Fu-Tian

Abstract

AbstractThe temperature rise of a ball screw is the main factor affecting machining accuracy. The traditional methods of calculation and analysis carry out coefficient fitting of known experimental data or using the formula for a friction heat source in bearing theory. However, the screw raceway parameters are ignored in the model. The variation in friction torque with temperature is not considered in the model, so it cannot be effectively applied to engineering. In this paper, the friction heat equation of the ball screw is established theoretically with the screw raceway parameter, and the friction torque is considered with the effect of temperature. A mathematical model of steady temperature and stable time is established for the effective heat source stroke section of the screw, and the temperature rise curve of the screw is fitted. The friction is divided into Coulomb friction torque and viscous friction torque. The viscosity affects viscous friction torque at low temperatures, so the variation in friction torque should be considered when calculating the temperature rise. When a specific temperature is reached, the viscous friction torque has little effect on the overall friction torque; then the ratio of temperature rises at different rotational speeds has an exponential relationship with the ratio of those speeds. The screw stability time decreases with increasing rotational speed. Twelve groups of tests are conducted to verify the theoretical analysis using two samples, two lubricating media, and three speeds. The experimental results agree well with the theory. This proves that the approach can be applied to engineering practice.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3