The influence of submillimeter morphological variations on the wettability of WEDM-fabricated dual-scale roughness aluminum alloy 6082 surfaces

Author:

Skondras-Giousios Dimitrios,Karmiris-Obratański PanagiotisORCID,Jarosz Magdalena,Leszczyńska-Madej Beata,Markopoulos Angelos P.

Abstract

AbstractDeriving inspiration from natural hierarchical superhydrophobic surfaces, multi-scale structures were manufactured on AA6082 surfaces via wire electrical discharge machining (WEDM), featuring microscale texture due to spark erosion, superimposed upon a wide-range simple and more complicated geometries of submillimeter profiles. The effect that the higher-order scale morphologies had on wettability was investigated. The dual-scale morphology elevated the hydrophobicity of the surfaces compared to single-scale or unmodified surfaces, reaching superhydrophobicity (151°) in the case of a certain triangular profile. Rectangular and triangular profiles facilitated the higher contact angles, while re-entrant geometries were able to totally prevent cavity wetting. A correlation of static contact angle with roughness parameters of the larger scale such as Ra, Rz, Rp, Rsk, and Rku for certain geometry configurations was identified. Peak hydrophobicity resulted at Ra = 70 μm, Rz = 240 μm, and Rp = 160 μm concerning simple geometries. Negative Rsk and Rku > 1.5 affected negatively contact angle of samples. All investigated tested types were found to reach higher hydrophobicity at moderate drop volumes (5 μl). The fabricated samples were anisotropic in at least two directions, showing decreased hydrophobicity in the front, parallel to the groove direction. When tested in multi-directional dynamic tilting up to 90°, the more complicated geometries were able to retain resistance to spreading. All samples demonstrated superliquiphilicity with lower surface tension liquids, making them strong candidate in applications such as oil/water separation. Finally, all samples tested sustained their hydrophobic character subsequent to a 3-month atmospheric exposure period.

Funder

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3