Predicting tensile strength of material extrusion parts during the pre-process using neural networks

Author:

Schmidt Carsten,Berchtold Florian,Griesbaum Rainer,Sehrt Jan T.,Finsterwalder Florian

Abstract

AbstractQuantitative quality characteristics of additive manufactured parts are influenced by parameters selected in the preparation process (pre-process), especially in the material extrusion process. As a result, a prediction of the tensile strength of manufactured parts is hardly possible, which significantly reduces the usability of the process. In this paper a neural network approach is used to predict the tensile strength during the pre-process. The parameters investigated are print speed, number of shells, layer thickness, nozzle temperature and infill density. A prediction with a mean absolute percentage error (MAPE) of 2.54% could be achieved for randomly generated process parameters using a training data set of 243 samples. This exceeds the best prediction accuracies of the current literature which is between 2.56 and 3.34%. However, this research is particularly different in that, unlike the existing literature, the developed prediction models were tested with untrained random parameter values in a properly conducted test. With a data reduction to a data volume of 32 samples the used approach achieved already a MAPE of 4.15%. The neural network approach outperformed a multiple linear regression even at low training data volume. This publication differs from previously published research activities due to the achieved prediction accuracies on random parameter sets, the number of investigated parameters and the sample size. Users are provided with an algorithm and its procedure to predict the tensile strength which can be adapted to the respective application with the help of company data.

Funder

Hochschule Karlsruhe HKA

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3