Projection micro-stereolithography versus master–slave approach to manufacture a micro-optofluidic device for slug flow detection

Author:

Saitta LorenaORCID,Celano Giovanni,Cicala Gianluca,Fragalà Maria Elena,Stella Giovanna,Barcellona Matteo,Tosto Claudio,Bucolo Maide

Abstract

AbstractIn this work, the use of projection micro-stereolithography (PμSL) to 3D print a micro-optofluidic device for slug flow detection is presented. For comparison purposes, a poly-dimethylsiloxane (PDMS)–based device was also manufactured by a novel master–slave 3D printing approach. The micro-optofluidic device has a microfluidic T-junction with a micro-optical section that consists of two optical fiber insertions used for slug flow detection. The design of the device also includes two micro-channels for the optical fiber’s insertion, needed to acquire a light signal, which give a direct information about the microfluidic channel inner flow by exploiting the absorption phenomenon. The working principle in the detection is based on a different light transmission correlated to the fluid interfering with the laser beam in a micro-channel section. The two materials used for the two manufacturing approaches were fully characterized in terms of their surface properties via both Atomic Force Microscopy (AFM) and angle of contact measure.The process within the two micro-channels was monitored optically and a signal correlated to the slug passage was analyzed for the flow tracking. A wide experimental campaign was done for the device manufactured through the PμSL technique in different operative conditions. Thus, the optimal one was identified through the Analysis of Variance (ANOVA). Then, a detailed comparison between the slug process detected inside the HTL resin device and the PDMS device was carried out to evaluate the pros and cons of using different materials and fabrication techniques. The analysis run on the two devices revealed that the HTL resin device can be used for slug flow detection, but future research is still needed to obtain a resin allowing to outperform the PDMS device.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3