Design and manufacture of mould-free fibre-reinforced laminates with compound curvature

Author:

Jenkins Christopher J.,Donough Matthew J.,Prusty Gangadhara B.

Abstract

AbstractComposite manufacturing demands mould tooling to produce dimensionally accurate parts, adding substantial capital costs to their production. Recent developments in advanced manufacturing of fibre-reinforced polymer composite elements have seen the implementation of mould-free technologies that can produce complex shaped parts off a flat tool. This paper presents eccentric fibre prestress as a novel mould-free method for producing curvatures within carbon fibre and glass fibre laminates. Tailoring the flexural rigidity along the primary orientation of the laminate is shown to result in predictable compound curvature profiles with a low average root mean square error of 1.39 across the four geometries tested. An analytical model based on Euler–Bernoulli beam theory is proposed and proven to correlate closely with the experiential laminates. Finally, an inverse design approach based on a genetic algorithm is demonstrated to design an accurate laminate configuration, achieving the top surface of a NACA 4412 aerofoil section with a low root mean square error of 1.98 using the proposed eccentric fibre prestress.

Funder

Australian Government

ARC Training Centre for Automated Manufacture of Advanced Composites

Australian Composite Manufacturing Cooperative Research Centre

University of New South Wales

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3