Abstract
AbstractThis study focuses on the fabrication and characterization of aluminum foam reinforced with nanostructured γ-Al2O3, utilizing AA5083 plates. The fabrication process involved the integration of TiH2 foaming agent particles and reinforcing nanoparticles via the friction stir process (FSP), resulting in the creation of precursor specimens. Subsequently, a separate foaming stage was conducted within a laboratory furnace. The integration of these particles was achieved through the machining of parallel grooves in a single aluminum plate. The initial phase of the experimental study focused on investigating the effect of varying amounts of the foaming agent. Large-scale foams were then produced, achieving a medium porosity of 70%. Electro-discharge machining was employed to prepare specimens for compression testing to analyze their stress–strain response. The results revealed a plateau stress of 27 MPa, a relative Young’s modulus of 4.44 × 10−3, and an energy absorption close to 17 MJ/m3 at 50% strain. Significantly enhanced plateau stress was observed in the manufactured reinforced aluminum foam compared to similar foams produced through conventional methods.
Funder
National Technical University of Athens
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献