Influence of post-processing milling conditions on the machinability and residual stresses evolution of LPBF 18Ni300 maraging steel

Author:

Duro Miguel,Silva TiagoORCID,Marques Maria José,Batista António,Rosa Pedro,de Jesus Abílio

Abstract

AbstractMetal additive manufacturing (MAM) currently allows the production of mechanical components with technical specifications suitable for structural applications with a high level of complexity. Despite the most recent technological developments, additively manufactured parts may still lack the geometrical and dimensional accuracy as well as surface integrity required for precision mechanical assemblies and system reliability. These requirements often lead to post-processing operations through precision machining technologies. The present work focuses on the machinability study of 18Ni300 maraging steel obtained by laser powder bed fusion and its comparison with the conventional counterpart. Milling tests were carried out covering a wide range of cutting parameters, aiming at understanding their influence and comparing the obtained results in terms of cutting force, specific cutting pressure, roughness and chip morphology. In depth residual stresses have been measured for different operational and metallurgical conditions and their comparison was performed. A more significant effect of the feed parameter on the analysed data is noticed, particularly regarding the affected layer depth of the residual stresses due to cutting. Moreover, the higher mechanical strength of the additively manufactured alloy does not translate into an equivalent increase in the required average specific cutting pressure.

Funder

Plano de Recuperação e Resiliência (PRR), República Portuguesa through NextGeneration EU

Programa Operacional Competitividade e Internacionalização, and Programa Operacional Regional de Lisboa funded by FEDER and National Funds

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3