Systematic manufacturability evaluation using dimensionless metrics and singular value decomposition: a case study for additive manufacturing

Author:

Coatanéa EricORCID,Nagarajan Hari P. N.,Panicker Suraj,Prod’hon Romaric,Mokhtarian Hossein,Chakraborti Ananda,Paris Henri,Ituarte Iñigo Flores,Haapala Karl R.

Abstract

AbstractAdditive manufacturing has been presented as a novel and competitive method to achieve unprecedented part shapes and material complexities. Though this holds true in niche markets, the economic viability of additive manufacturing for large-scale industrial production is still in question. Companies often struggle to justify their investment in additive manufacturing due to challenges in the integration of such technologies into mainstream production. First, most additive technologies exhibit a relatively low production rate when compared with traditional production processes. Second, there is a lack of robust design for additive manufacturing methods and tools that enable the leveraging of the attendant unique capabilities, including the ability to form organic part geometries and automated part consolidations. Third, there is a dearth of systematic part screening methods to evaluate manufacturability in additive manufacturing. To tackle the challenge of manufacturability evaluation, the present work proposes a novel approach derived from latent semantic analysis and dimensional analysis to evaluate parts and their production for a variety of selected metrics. The selected metrics serve as descriptors of design features and manufacturing functions, which are developed using functional modeling and dimensional analysis theory. Singular-value decomposition and Euclidean distance measurement techniques are used to determine the relative manufacturability for a set of parts for a specified manufacturing process technology. The utility of the method is demonstrated for laser powder bed fusion technology. While demonstrated for additive manufacturing here, the developed approach can be expanded for any given set of manufacturing processes. Expansion of this systemic manufacturability analysis method can support part design decision-making, process selection, and design and manufacturing optimization.

Funder

Business Finland

Fulbright Finland

Université Grenoble Alpes

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3