Abstract
Abstract
Pneumatic motors have several advantages and have many robotics and automation applications. The importance of the study is that it is a cheap and possible way to apply it to the fixed displacement pneumatic motors with simple directional control valve used. The purpose of the addition to any traditional pneumatic motors is to change the fixed displacement pneumatic motor to be variable speed and torque compared to the expensive systems such as the proportional control valve in many industrial applications. The study also included validated simulations using the Automation Studio program to control the pneumatic motor’s speed and torque. In addition, the results showed remarkable success in controlling the pneumatic motor outputs depending on the frequency of the compressed air-source pulses and pressure. The pulsating air frequencies of 1.5, 3, and 4.5 Hz were considered at different inlet source pressure changes from 1.72, 3.45, and 5.17 bar. As the pulsating flow frequency of compressed air decreased from 4.5, 3, and 1.5 Hz, the motor pressure and torque decreased. Furthermore, empirical correlations related to frequency and pressure effect have been developed. The error is 6.3–9.5% in predicting the motor speed and torque outputs. The limitation of the proposed method in real-life applications is about a maximum of 7.5 bar. On the other hand, the frequency is limited to 9 Hz using a mechanical solenoid.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献