In-process detection of grinding burn using machine learning

Author:

Sauter Emil,Sarikaya Erkut,Winter Marius,Wegener Konrad

Abstract

AbstractThe improvement of industrial grinding processes is driven by the objective to reduce process time and costs while maintaining required workpiece quality characteristics. One of several limiting factors is grinding burn. Usually applied techniques for workpiece burn are conducted often only for selected parts and can be time consuming. This study presents a new approach for grinding burn detection realized for each ground part under near-production conditions. Based on the in-process measurement of acoustic emission, spindle electric current, and power signals, time-frequency transforms are conducted to derive almost 900 statistical features as an input for machine learning algorithms. Using genetic programming, an optimized combination between feature selector and classifier is determined to detect grinding burn. The application of the approach results in a high classification accuracy of about 99% for the binary problem and more than 98% for the multi-classdetection case, respectively.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3