Author:
Sauter Emil,Sarikaya Erkut,Winter Marius,Wegener Konrad
Abstract
AbstractThe improvement of industrial grinding processes is driven by the objective to reduce process time and costs while maintaining required workpiece quality characteristics. One of several limiting factors is grinding burn. Usually applied techniques for workpiece burn are conducted often only for selected parts and can be time consuming. This study presents a new approach for grinding burn detection realized for each ground part under near-production conditions. Based on the in-process measurement of acoustic emission, spindle electric current, and power signals, time-frequency transforms are conducted to derive almost 900 statistical features as an input for machine learning algorithms. Using genetic programming, an optimized combination between feature selector and classifier is determined to detect grinding burn. The application of the approach results in a high classification accuracy of about 99% for the binary problem and more than 98% for the multi-classdetection case, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献