Experimental investigation of mechanical properties and energy absorption capabilities of hybrid lattice structures manufactured using fused filament fabrication

Author:

Syrlybayev Daniyar,Perveen Asma,Talamona DidierORCID

Abstract

Abstract Hybrid lattice structures are composed of several dissimilar unit cells arranged in specific patterns. Unlike their one-phase counterparts, hybrid lattices remain relatively unexplored. In this work, novel hybrid lattice structures composed of Pillar Octahedral (PO) and Rhombic Dodecahedron (RD) lattices having variable strut diameters are arranged in different orders to form hybrid vertical piles (HVP), 2D and 3D chessboard order (HCh2D and HCh3D), are proposed, and their mechanical properties, energy absorption characteristics, and deformation modes are investigated under quasistatic compression. The empirical results indicated that the mechanical properties of hybrid lattice structures are the average of those of their parent lattices. HVP lattice structure has a high yield stress of 1.2, 2.22, and 3.54 MPa when strut diameter is 1.5, 1.75, and 2 mm respectively, and stable post-buckling region. It was also observed that hybrid lattice structures are more efficient in absorbing the energy of the deformation. When strut diameter is 1.5 mm, PO lattice structure has an efficiency of 50%, while HVP, HCh2D, and HCh3D lattices have an efficiency of about 70–80%. Finally, Gibson-Ashby models were proposed to predict the mechanical properties of lattice structures as the function of relative density.

Funder

Nazarbayev University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3