An extendable framework for intelligent and easily configurable skills-based industrial robot applications

Author:

Heuss Lisa,Gonnermann Clemens,Reinhart Gunther

Abstract

AbstractModern, flexible, and easy-to-use robotic technologies have the potential to support companies to increase their productivity within today’s dynamic and volatile production. In this context, we introduce a skills-based software framework that makes it possible to configure the functional capabilities of industrial robots flexibly. In addition, we have structured the software framework into three consecutive expansion stages. In this way, it is possible to expand the robot’s reasoning capabilities step by step so that the robot is enabled to be instructed at higher abstraction levels and to process increasingly complex tasks. The contribution of our work is the further development of previous approaches and ideas from the research field of skills-based industrial robotic frameworks by considering new and previously unaddressed design issues within the structure of our software framework. We demonstrate the application of the framework using the example of an industrial robot for assembling a diverse range of LEGO products. The example of use consists of three consecutive scenarios. To begin with, the robot assembles different predefined product variants. Subsequently, we extend the robot application in a step-by-step manner to allow the robot to execute more and more complex tasks until it can finally plan individual tasks autonomously. On the one side, our approach shows how to enable companies with little robotic experience to start developing robotic applications and thereby gain further expertise. On the other side, by using this approach the effort and time for developing industrial robot applications will be reduced in the long term.

Funder

Bayerische Forschungsstiftung

German-French Academy for the Industry of the Future of Institute Mines-Telecom (IMT) and Technical University of Munich

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3