Author:
Schroepfer Dirk,Treutler Kai,Boerner Andreas,Gustus Rene,Kannengiesser Thomas,Wesling Volker,Maus-Friedrichs Wolfgang
Abstract
AbstractThe supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献