Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools

Author:

Denkena Berend,Dittrich Marc-André,Noske HendrikORCID,Lange Dirk,Benjamins Carolin,Lindauer Marius

Abstract

AbstractBall screws are frequently used as drive elements in the feed axes of machine tools. The failure of ball screw drives is associated with high downtimes and costs for manufacturing companies, which harm competitiveness. Data-based monitoring approaches derive the ball screw condition based on sensor data in cases where no knowledge is available to derive a physical model-based approach. An essential criterion for selecting the condition assessment method is the availability of fault data. In the literature, fault patterns are often artificially created in an experimental test bench scenario. This paper presents ball screw drive monitoring approaches for machine tool fleets based on machine learning. First, the potentials of automated machine learning for supervised anomaly detection are investigated. It is shown that the AutoML tool Auto-Sklearn achieves a higher monitoring quality compared to literature approaches. However, fault data are often not available. Therefore, unified outlier scores are applied in a semi-supervised anomaly detection mode. The unified outlier score approach outperforms threshold-based approaches commonly used in industry. The considered data set originates from a machine tool fleet used in series production in the automotive industry collected over 8 months. Within the observation period, multiple ball screw failures are observed so that sensor data about the transient phases between normal and fault conditions is available.

Funder

HORIZON EUROPE European Research Council

Niedersächsisches Ministerium für Wissenschaft und Kultur

Volkswagen Foundation

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference55 articles.

1. Altintas Y, Verl A, Brecher C et al (2011) Machine tool feed drives. CIRP Ann 60:779–796. https://doi.org/10.1016/j.cirp.2011.05.010

2. Imiela J (2006) Verfügbarkeitssicherung von Werkzeugmaschinenachsen mit Kugelgewindetrieb durch modellbasierte Verschleißüberwachung. Zugl.: Hannover, Univ., Diss., 2005. Berichte aus dem IFW / Institut für Fertigungstechnik und Werkzeugmaschinen, 01/2006. PZH Produktionstechn, Zentrum, Garbsen

3. Schopp M (2009) Sensorbasierte Zustandsdiagnose und -prognose von Kugelgewindetrieben. Zugl.: Karlsruhe, Univ., Diss., 2009. Forschungsberichte aus dem wbk, Institut für Produktionstechnik, Karlsruher Institut für Technologie (KIT), vol 152. Shaker, Aachen

4. Butler Q, Ziada Y, Stephenson D et al. (2022) Condition monitoring of machine tool feed drives: a review. Journal of Manufacturing Science and Engineering 144. https://doi.org/10.1115/1.4054516

5. Haberkern A (1998) Leistungsfähigere Kugelgewindetriebe durch Beschichtung. Dissertation, Universität Karlsruhe

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twin of the technological process for grinding helical flutes of a cutting tool;Real-time Processing of Image, Depth, and Video Information 2024;2024-06-20

2. Imbalanced Data Classification with Fuzzy Logic and Universal Image Fusion for Gearbox Defect Detection;2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP);2024-02-21

3. A Study on the Ball Screw Preload Identification Method Using Experimental Natural Frequency;Green Energy and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3