Abstract
AbstractPunching is a wide-spread production process, applied when massive amounts of the ever-same cheap parts are needed. The punching process is sensitive to a multitude of parameters. Unfortunately, the precise dependencies are often unknown. A prerequisite for optimal, reproducible and transparent process alignment is the knowledge of how exactly parameters influence the quality of a punching part, which in turn requires a quantitative description of the quality of a part. We developed an optical inline monitoring system, which consists of a combined imaging and triangulation sensor as well as subsequent image processing. We show that it is possible to capture images of the cutting surface for every part within production. We automatically derive quality parameters using the example of the burnish height from 2D images. In addition, the 3D parameters are calculated and verified from the triangulation images. As an application, we show that the status of tool wear can be inferred by monitoring the burnish height, with immediate consequences for predictive maintenance. Although limited by slow images processing in our prototype, we conclude that connecting machine and process parameters with quality metrics in real time for every single part enables data-driven process modelling and ultimately the implementation of intelligent punching machines.
Funder
Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Hochschule für angewandte Wissenschaften Kempten
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Reference29 articles.
1. Schomaker KH (1994) Prozessüberwachung und diagnose mit optoelektronischen messeinrichtungen an schneidpressen. VDI Verlag GmbH, Hannover
2. Kim JD, Kim HK, Heo YM, Chang SH (2012) A study on die roll height of special automobile seat recliner gear according to die chamfer shape in fine blanking tool. Appl Mech Mater 121-126:3694–3699. https://doi.org/10.4028/www.scientific.net/AMM.121-126.3694
3. Hoogen M (1999) Einfluß der Werkzeuggeometrie auf das Scherschneiden und Reißen von Aluminiumfeinblechen: Zugl.: Mu̇nchen, Univ., Diss., 1999, utg-Forschungsberichte, vol Bd. 6. Hieronymus, München
4. Behrens BA, Jocker J (2013) Optische Schnittkantenmessung und automatisierte Kenngrößenermittlung: Ergebnisse eines Vorhabens der Industriellen Gemeinschaftsforschung (IGF), EFB-Forschungsbericht, vol Nr. 385. EFB, Hannover
5. Hernández JJ, Franco P, Estrems M, Faura F (2006) Modelling and experimental analysis of the effects of tool wear on form errors in stainless steel blanking. J Mater Process Technol 180(1-3):143–150. https://doi.org/10.1016/j.jmatprotec.2006.05.015
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献