Cooling of motor spindles—a review

Author:

Denkena BerendORCID,Bergmann Benjamin,Klemme Heinrich

Abstract

AbstractThermally induced loads in motor spindles can cause a number of undesired effects. As a result, the process capability of spindles, and thus, the productivity of a process can decrease. Future motor spindles will be exposed to higher mechanical and especially thermal loads due to trends aiming to increase power densities and maximum speeds. These trends are amplified by increasingly powerful drive concepts and developments in bearing technology. Therefore, researchers assume that it will not be possible to raise the performance potential of spindles due to insufficient cooling of its heat sources. A series of different cooling concepts have been researched and developed in recent decades. These developments have been made for different purposes. They also differ considerably in terms of their cooling principles and cooling performance. In this article, these cooling approaches and the motivations for their development are described. Firstly, the causes of heat development in motor spindles are described in a historical context. Subsequently, the effects of heat development on the manufacturing-relevant properties of motor spindles are revealed. Finally, current deficits in the area of spindle cooling and the need for the development and transfer into industrial practice of more efficient and cost-effective cooling concepts to overcome future challenges are discussed.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3