Comparative analysis of wobble milling, helical milling and conventional drilling of CFRPs

Author:

Pereszlai CsongorORCID,Geier NorbertORCID

Abstract

AbstractDue to its excellent specific mechanical properties, carbon fibre-reinforced polymer (CFRP) composite is a widely used structural material in the aerospace industry. However, this material is difficult to cut, mainly due to its inhomogeneity and anisotropic features and because of the strong wear effects of its carbon fibres. In the scope of aerospace industrial uses of this material, thousands of holes have to be machined for purposes of assembly. Nevertheless, conventional drilling technology – even if special drilling tools are used – is only moderately able to manufacture good quality holes. Wobble milling is a novel advanced hole-making technology, which has been developed to minimize machining-induced geometrical defects like delamination or uncut fibres. The main objective of the present paper is to compare wobble milling, helical milling and conventional drilling technologies concerning unidirectional CFRPs. In addition, the kinematics of wobble milling technology is discussed in detail. In the scope of this paper, numerous machining experiments were conducted in unidirectional CFRPs: herein the impact of the type of cutting tool and of process parameters on the quality of machined holes are analysed and discussed (diameter of holes, circularity error and characteristics of uncut fibres). During these investigations, experimental data were evaluated with the help of digital image processing (DIP) and with the help of analysis of variance (ANOVA) techniques. Experimental results show that the amount of uncut fibres can significantly be minimized through the application of wobble milling technology.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3