Effect of eggshell powder on the microstructural and thermal behavior of Al7075/waste eggshell surface composites produced by solid-state friction stir processing developed for potential thermal applications

Author:

Srivastava Ashish Kumar,Nag Akash,Dwivedi Suryank,Dixit Amit Rai,Hloch SergejORCID

Abstract

Abstract Lightweight composite materials for potential thermal applications are the contemporary demand for manufacturing and aircraft industries where the possibility to improve and tailor the desired properties is based on the application. Carbonized eggshell powder is a solid lubricant with absorbent capability and has proven as a reinforcement for metallic base composites. In the present work, an attempt is made to investigate the effect of carbonized chicken eggshell powder (3 to 9% by weight) on the microstructural and thermal properties of Al7075 alloy processed by solid-state friction stir processing. An infrared thermography and three K-type thermocouples equipped with the base plate at three equal distances are used to measure the temperature with respect to time. The comparative study of microstructure and grain structure analysis has been done by light microscopy, scanning electron microscopy, and electron backscattered diffraction methods. The findings explored the dynamic recrystallization and grain recovery with a reduced grain size of 6.2 to 10.3 µm at a varying percentage of eggshell powder (3 to 9%) in the stir zone. The thermal conductivity and coefficient of thermal expansion (CTE) were measured for the temperature range of 50 to 400 °C. In addition to it, differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), and derivative thermo-gravimetric analysis (DTG) are conducted for the temperature range of 25 to 900 °C to discuss the endothermic, exothermic nature, and degradation characteristics. The result revealed the decreasing trend of thermal conductivity, and CTE values were found in the range of 97 to 53 W/mK and 26.6 to 24 × 10−6 K−1 (heating cycle), 27.2 to 23.8 × 10−6 K−1(cooling cycle), respectively. Furthermore, the higher and lower thermal conductivity of 108 W/mK and 62 W/mK is observed at higher and lower terminal voltages, 250 V and 100 V, respectively. The DTA, TGA, and DTG curves explored the maximum weight loss, which varies up to 5.25% with exothermic peaks and decomposition steps for each surface composite.

Funder

Technical University of Kosice

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3