Enhancing mechanical performance in SLS-printed PA12-slate composites through amino-silane treatment of mineral waste

Author:

Nobre Luís,Barros Daniel,Bessa João,Cunha Fernando,Machado Michael,Mendonça João P.,Luís Jorge,Oliveira Martinho,Machado Paulo,Fernandes César,Fangueiro Raul

Abstract

AbstractThe SLS additive manufacturing industry enables the development of products for diverse applications with distinct properties due to its excellent surface finish and ability to create varied part geometries, but it consumes high-performance materials with high acquisition costs. An extensive quarrying of stone leads to the accumulation of mineral residues, posing environmental hazards by contaminating soil and water when disposed of in landfills. The primary objective of the study was to incorporate mineral waste into the SLS technique and investigate the influence of its addition, along with a silane-based chemical treatment, on the mechanical performance of polymer-mineral composites (PA12-slate). Additionally, the feasibility of producing a highly loaded printed prototype, employing 50 wt% of mineral waste, was examined. Samples of PA12, PA12 blended with 50 wt% slate waste, and slate waste treated with silane underwent fabrication via selective laser sintering (SLS) and subsequent mechanical characterization, including tensile, flexural, and compressive tests. Additionally, the samples underwent accelerated aging using a QUV weathering tester, followed by mechanical characterization. The geometric accuracy, stability, and processing feasibility of these formulations were evaluated through SLS-printed composite prototypes utilizing PA12_50Sla_Si. It was found that the addition of 50% of slate to the PA12 presented mechanical properties decreasing compared to the printed PA12 only. However, an increase was verified when using silane-induced mineral bonding. The incorporation of mineral agents and silane enhanced the resistance of PA12 to aging. However, after aging, both tensile and flexural strength decreased across all printed samples. Nonetheless, this study showcased the feasibility of producing complex PA12-slate waste specimens containing up to 50 wt% of mineral waste using the SLS printing technique. Therefore, SLS presents itself as a viable means of adding value to this mineral waste.

Funder

Universidade do Minho

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3