Statistical supervised learning with engineering data: a case study of low frequency noise measured on semiconductor devices

Author:

Gámiz María Luz,Kalén Anton,Nozal-Cañadas Rafael,Raya-Miranda Rocío

Abstract

AbstractOur practical motivation is the analysis of potential correlations between spectral noise current and threshold voltage from common on-wafer MOSFETs. The usual strategy leads to the use of standard techniques based on Normal linear regression easily accessible in all statistical software (both free or commercial). However, these statistical methods are not appropriate because the assumptions they lie on are not met. More sophisticated methods are required. A new strategy based on the most novel nonparametric techniques which are data-driven and thus free from questionable parametric assumptions is proposed. A backfitting algorithm accounting for random effects and nonparametric regression is designed and implemented. The nature of the correlation between threshold voltage and noise is examined by conducting a statistical test, which is based on a novel technique that summarizes in a color map all the relevant information of the data. The way the results are presented in the plot makes it easy for a non-expert in data analysis to understand what is underlying. The good performance of the method is proven through simulations and it is applied to a data case in a field where these modern statistical techniques are novel and result very efficient.

Funder

Universidad de Granada

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Frequency Noise Sources and Back-Gate Coupling Effects in FDX-SOI Device;2023 IEEE International Integrated Reliability Workshop (IIRW);2023-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3