Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF)

Author:

Riener KirstinORCID,Pfalz Tino,Funcke Florian,Leichtfried Gerhard

Abstract

AbstractThe growing demand for more materials available for the LPBF-process, in particular high-strength aluminum alloys, is evident in the market. In the present work, a systematic investigation of the processability of aluminum 6182 series alloys, using LPBF, was carried out. For this purpose, the influence of process parameters, especially of enhanced preheating by heating the substrate plate during the LPBF process, on the microstructure of EN AW 6182 specimens was studied.Experiments were conducted at different preheating temperatures always using the same d-optimal design-of-experiments, the laser power, scanning speed, hatch distance, and laser focus position being varied over a wide range.It was found that the preheating temperature has the strongest impact on hot cracking. Higher temperatures result in a significantly reduced number of hot cracks in the microstructure. Moreover, an equiaxed microstructure of the specimens manufactured can be observed at preheating temperatures of 500 °C. In addition to the preheating temperature, the achievable part density is most strongly affected by the laser focus position and the laser power, whereas the hatch distance shows no discernible impact on the part density. Furthermore, neither the hatch distance nor the laser focus position shows any significant effect on hot cracking.In combination with the optimal scanning parameters, crack-free parts with a fully equiaxed grain structure and densities > 99.0% can be manufactured via LPBF at a preheating temperature of 500 °C.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3