Surface smoothing of additively manufactured Ti-6Al-4V alloy by combination of grit blasting and large-area electron beam irradiation

Author:

Shinonaga TogoORCID,Kobayashi Hiroya,Okada Akira,Tsuji Toshiya

Abstract

AbstractAdditively manufactured (AMed) titanium products are typically produced by electron beam melting (EBM), since oxidation of titanium alloy surface can be suppressed in vacuum environment. The surface roughness of AMed titanium products becomes more than 200 µm Rz, and the very rough surface would lead to reduction in fatigue strength. Therefore, a post surface finishing process is required. Abrasive blasting is one of the common surface smoothing processes of AMed metal products. Large surface roughness can be decreased, and compressive residual stress can be introduced to the surface. However, there is a limitation to reduction of surface roughness to several µm Rz. On the other hand, it was recently found that AMed metal surface produced by powder bed fusion with laser beam could be smoothed by large-area electron beam (LEB) irradiation. However, it is difficult to smooth surface with large initial surface roughness, and a tensile residual stress may be generated on the surface. In this study, surface smoothing and change in residual stress of AMed titanium alloy (Ti-6Al-4 V) were proposed by combination of grit blasting and LEB irradiation. Surface roughness of AMed Ti-6Al-4 V alloy significantly decreases from 265 to about 2.0 µm Rz by combination of grit blasting and LEB irradiation. Reduction rate of surface roughness by LEB irradiation linearly increases with decreasing mean width of blasted surface. Influence of the mean width on smoothing effect by LEB irradiation can be explained by thermo-fluid analysis. Moreover, tensile residual stress caused by LEB irradiation can be reduced when LEB is irradiated to blasted surface.

Funder

Japan Society for the Promotion of Science

Okayama University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3