Robust estimation of clinch joint characteristics based on data-driven methods

Author:

Zirngibl Christoph,Schleich Benjamin,Wartzack Sandro

Abstract

AbstractGiven a steadily increasing demand on multi-material lightweight designs, fast and cost-efficient production technologies, such as the mechanical joining process clinching, are becoming more and more relevant for series production. Since the application of such joining techniques often base on the ability to reach similar or even better joint loading capacities compared to established joining processes (e.g., spot welding), few contributions investigated the systematic improvement of clinch joint characteristics. In this regard, the use of data-driven methods in combination with optimization algorithms showed already high potentials for the analysis of individual joints and the definition of optimal tool configurations. However, the often missing consideration of uncertainties, such as varying material properties, and the related calculation of their impact on clinch joint properties can lead to poor estimation results and thus to a decreased reliability of the entire joint connection. This can cause major challenges, especially for the design and dimensioning of safety-relevant components, such as in car bodies. Motivated by this, the presented contribution introduces a novel method for the robust estimation of clinch joint characteristics including uncertainties of varying and versatile process chains in mechanical joining. Therefore, the utilization of Gaussian process regression models is demonstrated and evaluated regarding the ability to achieve sufficient prediction qualities.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of process variations on clinch joint characteristics considering the effect of the nominal tool design;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-06-11

2. Performance evaluation and testing methods of clinched joint;The International Journal of Advanced Manufacturing Technology;2024-03-08

3. PADDME—Process Analysis for Digital Development in Mechanical Engineering;Processes;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3