Establishing a process route for additive manufacturing of NiCu-based Alloy 400: an alignment of gas atomization, laser powder bed fusion, and design of experiments

Author:

Roth Jan-PhilippORCID,Šulák Ivo,Kruml Tomáš,Polkowski Wojciech,Dudziak Tomasz,Böhlke Peter,Krupp Ulrich,Jahns Katrin

Abstract

AbstractAlloy 400 is a corrosion-resistant, NiCu-based material which is used in numerous industrial applications, especially in marine environments and the high-temperature chemical industry. As conventional manufacturing limits geometrical complexity, additive manufacturing (AM) of the present alloy system promises great potential. For this purpose, a robust process chain, consisting of powder production via gas atomization and a design of experiment (DoE) approach for laser powder bed fusion (LPBF), was developed. With a narrow particle size distribution, powders were found to be spherical, flowable, consistent in chemical composition, and, hence, generally applicable to the LPBF process. Copper segregations at grain boundaries were clearly detected in powders. For printed parts instead, low-intensity micro-segregations at cell walls were discovered, being correlated with the iterative thermal stress applied to solidified melt-pool-near grains during layer-by-layer manufacturing. For the production of nearly defect-free LPBF structures, DoE suggested a single optimum parameter set instead of a broad energy density range. The latter key figure was found to be misleading in terms of part densities, making it an outdated tool in modern, software-based process parameter optimization. On the microscale, printed parts showed an orientation of melt pools along the build direction with a slight crystallographic [101] texture. Micro-dendritic structures were detected on the nanoscale being intersected by a high number of dislocations. Checked against hot-extruded reference material, the LPBF variant performed better in terms of strength while lacking in ductility, being attributed to a finer grain structure and residual porosity, respectively.

Funder

H2020 LEIT Advanced Manufacturing and Processing

Hochschule Osnabrück

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3