Influence of the deposition pattern on the interlayer fracture toughness of FDM components

Author:

Lambiase FrancescoORCID,Stamopoulos Antonios G.,Pace Francesco,Paoletti Alfonso

Abstract

AbstractThe present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m2 for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m2 and 3.9 kJ/m2 for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.

Funder

Università degli Studi dell’Aquila

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error introduced by direct 3D printing of compression samples of PLA made by FDM process;The International Journal of Advanced Manufacturing Technology;2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3