Toward cost-efficient tolerancing of 3D-printed parts: a novel methodology for the development of tolerance-cost models for fused layer modeling

Author:

Roth MartinORCID,Schaechtl PaulORCID,Giesert Andreas,Schleich BenjaminORCID,Wartzack SandroORCID

Abstract

AbstractTolerance allocation methods significantly contribute to the qualification of Additive Manufacturing (AM) for (small-)series production ensuring high performance and efficiency. However, their usage prerequisites the availability of quantitative, reliable information on the impact of the assigned tolerances on the resulting manufacturing costs. The given article proposes a novel methodology for the systematic development of tolerance-cost curves for a cost-efficient tolerancing of 3D-printed parts. The proposed structured workflow aims at serving as a general guideline for both researchers and practitioners, while the exemplarily chosen perspective from Fused Layer Modeling (FLM) illustrates its adaption to a specific AM technology. The indirect, non-apparent interrelations between tolerances and resulting costs are modelled with the aid of an activity-based cost model, whereas the individual costs elements are mapped as function of the values for the machine-specific process parameters for AM, e.g., layer height or printing speed, which are required to achieve the assigned design tolerances. The total procedure covers all relevant steps, viz. the identification and quantification of the single cost items, the design of benchmark artifacts, adapted to given manufacturing and measuring techniques, the empirical determination of data on cost and geometrical accuracy by design of experiments and tolerance-cost curves. Its exemplary application to an academic use case shows its general applicability and benefits, but also its current limitations.

Funder

deutsche forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3