A theoretical approach to the residual stress assessment based on thermal field evaluation in laser beam welding

Author:

Giudice FabioORCID,Sili AndreaORCID

Abstract

AbstractResidual stresses are one of the major issues in welded parts, since they could be detrimental to the integrity of components and structure. Their determination is rather complex and could be an arduous task, both when it is based on experimental methods and on numerical simulations. The proposed work presents a theoretical approach to the prediction of the longitudinal residual stress distribution, based on a parameterized multi-source model for thermal field simulation in laser welding previously introduced. Reference is made to the case of “keyhole” full penetration welding mode obtained by CO2 laser beam single pass on butt-positioned AISI 304L plates. The resolution of the thermal field allows the analytical calculation of the distribution of the longitudinal residual stresses in two ways: one makes use of a simplified formulation of the distribution well-known in the literature; a second modality makes use of a procedure for residual stress generation, which is based on a combined processing of thermal profiles and the corresponding heating–cooling cycles calculated in single points as their distance from the welding axis varies, and provides a complete characterization of the distribution of longitudinal residual tensile stresses. After the introduction of thermal field modeling, both the proposed residual stress calculation procedures are detailed, applied to the analyzed case, and validated, highlighting the differences in the approaches and results.

Funder

Università di Catania

Università degli Studi di Catania

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3