Characterization of cold metal transfer and conventional short-circuit gas metal arc welding processes for depositing tungsten carbide-reinforced metal matrix composite overlays

Author:

Karimi Mohammad RezaORCID,Wang Sheng-HuiORCID,Jelovica JasminORCID

Abstract

AbstractThis paper compares the processing characteristics of advanced CMT (cold metal transfer) and conventional GMAW-S (gas metal arc welding with short-circuit metal transfer) processes for depositing Ni-WC MMC (nickel-based metal matrix composites reinforced with WC) overlays. In contrast to common expectations, advanced CMT technology with mechanically assisted droplet transfer could not demonstrate significant advantages over the GMAW-S process; on the contrary, CMT exhibits marginal disadvantages in terms of carbide transfer efficiency, volume fraction of retained WC, and deposition rate. Some carbides originally contained in the core of the feed wire are blown away and expelled out of the processing zone leading to physical losses of WC particles during the deposition processes, which is more significant for the CMT process owing to much higher waveform cycle frequency and cyclic feed wire retractions. CMT exhibits superior waveform stability, better control over penetration depth, marginally lower dilution level, and exceptional arc stability. The main parameters affecting carbide transfer efficiency and volume fraction of retained WC are wire feed speed and travel speed for both processes; increased wire feed speed and travel speed generally lead to decreased carbide transfer efficiency and reduced volume fraction of retained WC. Shielding gas may have different effects on the outcomes for the CMT and GMAW-S processes. CMT overlays show comparatively higher W and lower Fe concentration in the matrix, while GMAW-S overlays show a higher concentration of Fe in the matrix (due to elevated dilution level) with marginally higher matrix microhardness and more herringbone-like secondary carbide precipitates.

Funder

National Research Council Canada

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3