An integrated method and tool for telescopic beams design in extendable undercarriages

Author:

Catenacci Luca,Bilancia PietroORCID,Cavedoni Andrea,Pellicciari Marcello

Abstract

AbstractEarth-moving machine builders require innovative design methods and tool to optimize structural performance while reducing production and design costs, particularly in crucial phases like undercarriage frame design and structural verification. After an in-depth description of the design flow normally followed in industry, the paper presents a computationally efficient method and tool to aid designers in dimensioning extendable tracked undercarriages, aiming to drastically reduce design time and efforts to optimize resources. The proposed tool is based on an analytical model established from in-depth analyses of the undercarriage Computer Aided Design (CAD) assembly and the expertise of the industrial partner. To address the 3D structural problem, a planar system is employed with proper corrective coefficients. These coefficients are meticulously evaluated through direct comparison with Finite Element Method (FEM) models by seamlessly integrating SolidWorks and ANSYS Workbench. The tool accepts as inputs geometric and material data, as well as specific user-defined load scenarios, providing outputs in the form of the deflected configuration of the undercarriage and stress levels. Direct comparison with the results obtained from FEM for three industrial undercarriage models demonstrates the validity of the approach, with errors consistently within the 10% range in almost all cases. This enables designers with no advanced skills in FEM to efficiently validate diverse design variants with minimal effort. Once validated, the tool is integrated with an optimizer in Matlab to conduct computationally efficient design optimization studies. The optimization problem, focused on minimizing the beam’s vertical size while maintaining structural integrity and limiting deflections, has been successfully resolved within a limited computational time, showcasing the benefits of the proposed approach for undercarriage design.

Funder

Università degli Studi di Modena e Reggio Emilia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3