Particles’ distribution enhancing in aluminum-based composites produced by upward friction stir processing

Author:

Vidal CatarinaORCID,Ferreira Pedro M.,Inácio Patrick L.,Ferreira Francisco B.,Santiago Duarte,Meneses Pedro,Silva Rui J. C.,Santos Telmo G.

Abstract

AbstractA new variant of friction stir processing named upward friction stir processing (UFSP) is a promising approach to control particles’ distribution and promote a more uniform distribution over a larger processed area. This variant involves using two sheets with functional particles between them to produce metallic composites. A spacer is used to ensure the desired quantity and uniform distribution of the particles and prevent sputtering. This technique promotes an upward flow to introduce more particles with a uniform distribution in the processed volume, avoiding discrete holes or grooves. This study involved enhancing the particles’ distribution by varying process parameters. The resulting trial with the best particles’ distribution was characterized by means of light microscopy, eddy current testing, microhardness mapping, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The study revealed that UFSP can improve the particles’ distribution in the stir zone of metallic composites, especially when multi-passes are performed towards the retreating side of the plates. The process parameters that produced an improvement in particles’ distribution were six passes with an offset of 1 mm towards the retreating side, the tool rotation and processing speed of 900 rev/min, and 180 mm/min, respectively, and a spacer’s thickness of 0.5 mm. The resulting hardness and electrical conductivity profiles show that the UFSP technique can significantly affect material’s properties, including mechanical strength, particularly when processing with tool offset towards the retreating side. Furthermore, the hardness increased by about 22% in composites produced with the addition of reinforcement particles. However, for some aluminum alloys, the properties decreased under such conditions. These findings highlight the potential of UFSP for producing functionalized materials with tailored properties, while also underscoring the importance of careful parameters selection to optimize the material´s performance. Graphical Abstract

Funder

Fundação para a Ciência e a Tecnologia

Universidade Nova de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3